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1  | INTRODUC TION

Estimating the abundance of organisms in the environment is fun-
damental to the study and management of ecological systems 
(Krebs, 1972). However, estimating organism abundance with accu-
racy and precision is often difficult or costly, particularly in aquatic 
systems where organisms are hidden underwater. Environmental 
DNA (eDNA) may provide a solution to this problem. By analyzing 
the DNA in an environmental sample, we can infer which organisms 

inhabit that environment without directly observing them (Jerde, 
Mahon, Chadderton, & Lodge, 2011). By quantifying that DNA, we 
may even infer organism abundance (Yates, Fraser, & Derry, 2019).

Monitoring organism abundance is especially critical in fisher-
ies, wherein managers must balance fish harvest against available 
fish production to maximize yield without overharvesting the pop-
ulation. Achieving this balance relies on accurate and precise mon-
itoring of the population and reacting to change with management 
strategies. Assessing population size is especially challenging for 
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Abstract
Estimating the abundance of organisms is fundamental to the study and management 
of ecological systems. However, accurately and precisely estimating organism abun-
dance is challenging, especially in aquatic systems where organisms are hidden un-
derwater. Estimating the abundance of fish is critical for the management of fisheries 
which relies on accurate assessment of population status to maximize yield without 
overharvesting populations. Monitoring population status is particularly challeng-
ing for inland fisheries in which populations are distributed among many individual 
waterbodies. Environmental DNA (eDNA) may offer a cost-effective way to rapidly 
estimate populations across a large number of systems if eDNA quantity correlates 
with the abundance of its source organisms. Here, we test the ability of quanti-
ties of eDNA recovered from surface water to estimate the abundance of walleye 
(Sander vitreus), a culturally and economically important sportfish, in lakes in north-
ern Wisconsin (USA). We demonstrate a significant, positive relationship between 
traditional estimates of adult walleye populations (both number of individuals and 
biomass) and eDNA concentration (R2 = .81; n = 22). Our results highlight the utility of 
eDNA as a population monitoring tool that can help guide and inform inland fisheries 
management.
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inland fisheries in which populations are distributed among many 
individual water bodies across a landscape, adding a layer of spatial 
complexity to monitoring and management. Inland fish populations 
are often estimated with expensive and personnel-intensive mark–
recapture surveys involving capturing and counting individuals with 
nets and electroshocking boats. Mark–recapture surveys can be dif-
ficult to deploy across large numbers of lakes that may comprise a 
fishery. Therefore, population status data for inland fisheries is gen-
erally poor. Overharvest, habitat loss, climate change, and invasive 
species (Lynch et al., 2016) are driving declines across many inland 
fisheries (Embke et  al.,  2019; Post et al., 2002; Rypel, Goto, Sass, 
& Vander Zanden, 2018). In light of these management challenges, 
there is a pressing need for new population monitoring approaches, 
particularly approaches that would enable rapid assessment of fish-
ery status across large numbers of lakes.

Walleye (Sander vitreus) are an iconic sportfish in the inland fisher-
ies of central North America. In the state of Wisconsin (USA), walleye 
are a centerpiece of the state's $2 + billion a year fishing economy 
(Wisconsin Department of Natural Resources, 2019). However, mul-
tiple stressors are contributing to the decline of natural recruitment 
and production of walleye in many lakes (Embke et al., 2019; Hansen, 
Read, Hansen, & Winslow, 2017; Rypel et al., 2018). In the mid-1980s, 
courts reaffirmed the treaty rights of native Ojibwe tribes to spear 
walleye in the lakes of Wisconsin's Ceded Territory (roughly the north-
ern third of the state; Nesper, 2003). Since then, the walleye fishery 
has been fraught with cultural and economic tension surrounding 
harvest pressure from tribal spearing and recreational angling, which 
drives the region's tourism industry (Nesper, 2003). To conserve the 
fishery, a joint state-tribal task force has been charged with monitor-
ing walleye populations across Wisconsin's Ceded Territory fishery 
to inform safe harvest limits for spearing and angling (Cichosz, 2016). 
This population monitoring effort across a large number of systems 
provides an opportunity to test the utility of eDNA as a population 
monitoring tool by comparing quantitative eDNA-derived population 
estimations to those of mark–recapture surveys.

The Ceded Territory of Wisconsin contains over 900 lakes with 
walleye populations. State and tribal biologists currently monitor 
only ~5% of walleye populations annually using costly mark–recap-
ture surveys (Cichosz, 2016). Roughly, half of the 900 + lakes are re-
visited over time to monitor population trends, but often 5–10 years 
pass between sampling events on these lakes (Embke et al., 2019). 
For the remaining half of walleye lakes, only a handful are surveyed 
each year, and so many lakes are never visited. This infrequent 
sampling means that management strategies are generally not re-
sponsive to changing populations. Given recent declines in walleye 
populations, expanding population monitoring would be a critical 
step toward understanding the drivers of regional walleye declines 
and managing for the fishery's recovery and long-term sustainability 
(Embke et al., 2019; Rypel et al., 2018).

Improving population assessment may be possible with eDNA 
surveys. Sampling DNA shed into the environment allows rapid 
and cost-effective detection of organisms (Goldberg, Strickler, 
& Pilliod,  2014; Jerde et  al.,  2011; Rees et  al.,  2014; Thomsen & 

Willerslev, 2014), and the ability to infer organism abundance from 
eDNA quantity has recently been explored for several aquatic spe-
cies (Pilliod, Goldberg, & Arkle, 2013; Doi et al., 2015; Lacoursière-
Roussel, Côté, Leclerc, & Bernatchez, 2016; Doi et al., 2017; Klobucar, 
Rodgers, & Budy, 2017; Salter, Joensen, Kristiansen, Steingrund, & 
Vestergaard, 2019). In contrast to the costly and personnel-intensive 
netting and electroshocking required by traditional mark–recapture 
surveys to capture individuals, eDNA surveys only require the collec-
tion of environmental samples (e.g., water) from the field. Indirectly 
sampling organisms with eDNA does not provide valuable sex, size, 
and age data (Evans & Lamberti, 2018), so an eDNA survey would 
not replace the direct capture or observation of individuals. Rather, it 
could expand the number of systems for which population size can be 
monitored. However, our ability to accurately and precisely estimate 
organism abundance from quantified eDNA remains largely uncer-
tain outside of mesocosms (Yates et al., 2019). Previous quantitative 
eDNA studies found that eDNA copy number explains on average 
~80% of the variability in organism abundance in controlled meso-
cosms, but only ~50% across natural systems (Yates et  al.,  2019). 
Improving on that explanatory power in natural systems is critical to 
establishing eDNA as a useful tool for monitoring populations.

Here, we test the ability of eDNA to estimate walleye abun-
dance in lakes across Wisconsin's Ceded Territory. Leveraging 
mark–recapture population estimates currently used to monitor 
walleye populations, we tested for relationships between walleye 
eDNA recovered from lake surface water with traditional adult 
walleye population estimates for 24 lakes collected over two 
years. Finding a robust correlation would strengthen our under-
standing of eDNA as a tool for monitoring organism abundance 
and move toward expanding the data that inform the management 
of an important inland fishery.

2  | METHODS

2.1 | Mark–recapture sampling

Adult walleye (all fish  ≥  381  mm and all sexable fish) were sur-
veyed in the Ceded Territory of Wisconsin shortly after lake ice had 
melted (i.e., “ice-off”) in May of 2017 and 2018 by the Wisconsin 
Department of Natural Resources (WDNR) and the Great Lakes 
Indian Fish and Wildlife Commission (GLIFWC). Both agencies per-
formed mark–recapture surveys to estimate adult walleye popula-
tions, but their methods differed slightly. WDNR marked fish caught 
in fyke nets with a Floy® tag or fin clip and used boat electroshock-
ing to recapture individuals 1–4 days after marking (Cichosz, 2016). 
GLIFWC both marked and recaptured via boat electroshocking. For 
most collected walleye, total length (TL, mm) was recorded. Weight 
was also recorded (kg) for some individuals. Adult population esti-
mates were calculated as:

(1)N=
(M+1)(C+1)

(

R+1
)
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where N = population estimate, M = number of fish caught, marked, 
and released in the first effort, C = total number of fish caught in the 
second effort, and R = number of marked fish recaptured in the second 
effort (Cichosz, 2016). This method includes a Chapman modification 
(the addition of 1 to M, C, and R) to reduce bias in small sample sizes 
(Ricker, 1975). Coefficients of variation (CV) for each population esti-
mate were calculated as:

We combined mark–recapture population estimates and fish 
length and weight data to estimate adult walleye biomass for each 
lake using methods adapted from Embke et al.  (2019). For full bio-
mass calculation methods, see Appendix. Although only adult wall-
eye were sampled in these mark–recapture surveys, hereafter we 
will use the terms “walleye density” and “walleye biomass” to refer 
to the number and biomass of adult walleye standardized by area 
(individuals/ha and kg/ha). When generalizing about number and 
biomass metrics, we will use the term “walleye abundance.”

A subset (n = 24) of lakes receiving traditional mark–recapture 
population estimates were selected for eDNA sampling—12 lakes in 
July 2017 and 12 lakes in July 2018. Lakes were chosen to span a 
wide range of walleye densities (0.8–52.4  individuals/ha) and lake 
surface areas (84–1,617 ha).

2.2 | eDNA sampling

We collected 1 L samples of surface water at nine sites in each lake. 
Four offshore and five nearshore sites were selected in advance to 
be representative of dominant lake bottom types. We stored sam-
ples in a cooler for no more than 6 hr, vacuum filtered the water onto 
47-mm-diameter, 0.7 μm glass microfiber filter paper, and incubated 
filters overnight in 900 μl of Longmire's cell lysis buffer (Longmire, 
Maltbie, & Baker, 1997) at room temperature (ca. 25°C) in 2-ml snap-
top microcentrifuge tubes. We then extracted DNA from the filters 
with phenol:chloroform:isoamyl (25:24:1), precipitated DNA from 
the aqueous phase with 500 μl of ice cold isopropanol and 250 μl of 
room temperature 5 M NaCl, washed the DNA pellets twice in 70% 
ethanol, and allowed pellets to air dry for 20 min before rehydrating 
them in 200 μl of a buffer solution of 10 mM Tris-HCl and 1 mM 
Na-EDTA. This extraction protocol is adapted from Renshaw, Olds, 
Jerde, Mcveigh, and Lodge (2015). Extracted samples were stored at 
−20°C until amplification (1–30 days later).

We performed real-time quantitative polymerase chain reac-
tion (qPCR) on extracted DNA using a BIO-RAD C1000 Thermal 
Cycler equipped with a CFX96 Real-Time System (Bio-Rad, 
Hercules, CA). Reactions used Ex Taq DNA Polymerase Hot-Start 
Version (TaKaRa Bio) and a PCR primer pair and minor groove 
binding probe (Integrated DNA Technologies) specific for Sander 
vitreus (F: 5’-CTATTATACTATTTACCCTCGGGCTCG-3’; R: 5’-GTC 
GATTGAACAATGAAGTATTTTGC-3’; Probe: 5’-FAM-TAATTGCCTG 

AATGGGTC-MGBNFQ-3’; amplicon length: 175  bp) targeting the 
mitochondrial NADH dehydrogenase subunit 2 (ND2) region. The 
following PCR profile was used: 55 cycles, Td: 15 s at 95°C, Ta: 30 s at 
60°C, Te: 30 s 60°C. Each reaction was 20 μl and contained 600 nM of 
each primer, 250 nM of probe, 7.5 μl of Ex Taq DNA Polymerase Hot-
Start, 2.75 μl of Nanopure water, and 4 μl of template DNA. Primers, 
probe, and protocols were developed by Dysthe et al. (2017).

We quantified eDNA using a serial dilution of gBlocks pos-
itive controls (31,250, 6,250, 1,250, 250, 50, 10, and 0  copies/μl; 
Integrated DNA Technologies). Negative controls were included at 
the sample collection, filtration, extraction, and qPCR steps. Samples 
and negative controls were run in quadruplicate qPCRs. Inhibition 
was tested by spiking a fifth reaction of each sample with 250 cop-
ies/μl of gBlocks target DNA and comparing amplification timing to 
that of the 250 copies/μl standard. Inhibition was characterized by 
>1 Ct change. Inhibition reaction volumes were balanced by omitting 
a volume of water equivalent to the gBlocks spike.

Comparison of gBlock-spiked samples to gBlocks positive con-
trols showed negligible inhibition in all samples (difference < 1 Cq). 
No negative control wells amplified, indicating no discernible con-
tamination. Mean standard qPCR efficiency was 93.37%, and the 
mean standard R2 value was .99.

The value chosen to represent each lake's eDNA concentration 
was calculated from the qPCR starting quantity (see supplementary 
material, Spear, Embke, Krysan, & Vander Zanden, 2020), defined 
by the estimated number of DNA copies in each qPCR well at the 
beginning of the qPCR. Dividing the qPCR starting quantity by the 
4 μl of sample DNA in each reaction, then multiplying by the 200 μl 
in which each sample's DNA extraction was suspended produced 
an estimated number of DNA copies in each sample. Because each 
sample was 1 L of lake water, this value is expressed as an eDNA 
concentration (copies/L of lake water). To arrive at one eDNA con-
centration value for each lake, we averaged the four qPCR replicates 
within each of the lake's nine samples and then averaged those val-
ues across the nine within-lake samples. eDNA concentration was 
square-root transformed to achieve normality for linear regression 
analysis.

2.3 | Linear modeling

Before model selection, two lakes were omitted from our analy-
sis because their walleye populations were uncharacteristic of the 
walleye lakes in this region (Figure S2), and because their walleye 
abundance relationships to their eDNA values represented extreme 
outliers compared to the other lakes in our study. Bearskin Lake was 
omitted because its walleye density (52.4 individuals/ha) was nearly 
7 times higher than the mean value of regional walleye populations 
(Figure S2a). In a linear regression of walleye density and eDNA, 
Bearskin Lake's Cook's Distance value (18.3) was over 55 times the 
next highest value among our study lakes. Long Lake was also omit-
ted from our analysis because its walleye population size structure 
was dominated by large individuals, leading to walleye biomass (kg/

(2)CV
(

N
)

=

√

N2(C−R)

(C+1)(R+2)
÷N
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ha) and mean walleye size (kg) estimates uncharacteristic of regional 
walleye lakes. Long Lake's walleye biomass (46.8 kg/ha) and mean 
walleye size (4.0 kg) were 7 and 4 times higher than the mean values 
of regional walleye populations, respectively (Figure S2b,c). In a lin-
ear regression of walleye biomass (kg/ha) and eDNA concentration, 
Long Lake's Cook's Distance value (29.6) was over 90 times the next 
highest value among our study lakes. Results that do not omit these 
lakes can be found in Figure S1.

We analyzed the relationship between walleye abundance 
and eDNA concentration by linear regression. Stepwise (bidirec-
tional; AIC) and all subsets (BIC) model selection was performed 
to explain eDNA concentration from either walleye density (in-
dividuals/ha) or walleye biomass (kg/ha) combined with a suite 
of other relevant parameters likely to influence the production, 
persistence, or capture of eDNA. These parameters were mean 
walleye size (kg), age-0 walleye catch per unit effort (CPUE; indi-
viduals/km of shoreline collected in the fall of each year by WDNR 
and GLIFWC; Cichosz, 2016), water clarity (Secchi depth; m), lake 
pH, log10 of lake surface area (ha), and maximum lake depth (m) 
(Papes & Vander Zanden, 2010).

To accommodate for heterogeneity in the variance of the mean 
eDNA concentration values, we applied a weighted least squares 
approach: We weighted observations by the inverse proportion of 
the variance in eDNA concentration among the nine sites within 
each lake. This approach reduces the influence of lakes with high 
within-lake eDNA variance (Gelman & Hill,  2007). We applied the 
weighted least squares approach only for the best performing mod-
els (Table 1).

Because the mark–recapture and eDNA surveys were spread 
over two years, and because the mark–recapture surveys were 
performed by two different management agencies with differing 
sampling approaches, we performed ANCOVAs (Type I SS) to test 

for the significance of year and agency as interaction terms in the 
best performing models. We used an α = 0.05 for all statistical anal-
yses. All analyses and figures were produced in R version 3.4.3 (R 
Development Core Team, 2017).

3  | RESULTS

3.1 | Model performance

We found a significant positive relationship between eDNA concen-
tration and walleye density (n = 22, R2

adj
 = .62, p < .001; Figure 1a). 

After applying the weighted least squares approach, and after model 
selection added mean walleye size (kg) and its interaction to the 
linear model, the relationship between eDNA concentration and 
walleye density improved (R2

adj
 = .81, p < .001; Table 1). Models pre-

dicting eDNA concentration from walleye biomass instead of wall-
eye density exhibited similar performance (Figure 1b). Generally, the 
best performing models did not include age-0 walleye or abiotic lake 
characteristics but were some combination of walleye abundance 
estimates (density or biomass) with walleye size and the weighted 
least squares approach (Table 1).

TA B L E  1   Best performing models for predicting eDNA 
concentration (copies/L) from walleye (Sander vitreus) density 
(individuals/ha) and walleye biomass (kg/ha) from Ceded Territory 
of Wisconsin lakes during 2017 and 2018, with other walleye 
population and lake characteristic parameters (mean walleye size 
(kg), age-0 walleye catch per unit effort (CPUE; individuals/km of 
shoreline), water clarity (Secchi depth; m), lake pH, log10 of lake 
surface area (ha), and maximum lake depth (m))

Model parameters R2
adj

Residual 
SE AIC BIC

walleye density .62 0.38 23.15 26.42

walleye density * mean 
walleye size (kg)

.64 0.36 22.77 28.23

walleye density * mean 
walleye size (kg) (weighted)

.81 0.28 13.99 19.45

walleye biomass .42 0.45 31.28 34.55

walleye biomass + mean 
walleye size (kg)

.64 0.36 21.68 26.05

walleye biomass + mean 
walleye size (kg) (weighted)

.82 0.27 12.55 16.91

F I G U R E  1   Simple linear regressions (black lines) of (a) eDNA 
concentration versus walleye (Sander vitreus) density (individuals/
ha) and (b) walleye biomass (kg/ha) as determined by traditional 
mark–recapture methods in Ceded Territory of Wisconsin lakes 
during 2017 and 2018. Both demonstrate significant, positive 
relationships. Gray polygons represent 95% confidence intervals
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3.2 | Year and Agency as Potential Factors

ANCOVA revealed that sampling year (2017 vs. 2018) was not a sig-
nificant term in the best performing (those including mean walleye 
size and weighted least squares) walleye density (p > .05) or walleye 
biomass (p > .05) models. Similarly, mark–recapture agency (WDNR 
or GLIFWC) was not a significant term in those models (both p > .05). 
For the simple model of walleye density versus eDNA concentration 
(no additional terms or weighting), the agency interaction term had 
a p value of 0.041. With such a small sample size of GLIFWC lakes 
(n  =  7), it is difficult to make strong inferences about differences 
among the two agencies.

4  | DISCUSSION

Our results build on a growing body of evidence that eDNA quantity 
correlates with organism abundance and suggest that quantifying 
eDNA could be a useful population monitoring tool. We demon-
strate that walleye density explains a majority of the variance in 
walleye eDNA recovered from lake surface water (R2 =  .62) across 
natural systems (n = 22) in a fishery of critical management concern. 
Incorporating mean walleye size and accounting for variability in 
eDNA concentration among samples within a lake improves that re-
lationship (R2 = .81). Our significant, positive, and linear relationship 
is stronger than the average relationship found in other quantitative 
eDNA studies in natural systems (R2 =  .50; Yates et al., 2019) and 
approaches the average performance of quantitative eDNA in me-
socosm studies (R2 = .82; Yates et al., 2019).

4.1 | Density versus biomass

Walleye density (individuals/ha) alone slightly outperforms walleye 
biomass (kg/ha) alone in explaining eDNA concentration (R2 =  .62 
and .42; BIC  =  26.42 and 34.55, respectively). How an organism's 
size affects its eDNA production remains poorly understood, but 
it likely varies by species and life stage (Lacoursière-Roussel et al., 
2016). Yates et al. (2019) found organism density and biomass were 
similar in explaining eDNA concentration in their metanalysis of 
quantitative eDNA studies. However, our best models incorporated 
both walleye density and biomass by including mean walleye size 
(kg), which suggests walleye eDNA abundance is driven both by the 
number of individuals and their relative size. In fact, in our (weighted) 
model predicting eDNA concentration from walleye biomass and 
mean walleye size, mean walleye size had a negative coefficient, sug-
gesting that a given biomass of a few large fish produces less eDNA 
than an equivalent biomass of many small fish.

We may gain additional insights on eDNA’s relationship with fish 
density and biomass from the two lakes which we omitted from our 
analysis for being uncharacteristic of regional walleye populations. 
These two lakes are included in a regression analysis in Figure S1. 
Long Lake, having a population of average density but dominated 

by large individuals (Figure S3), fit well with the overall relationship 
when using walleye density to predict eDNA concentration (Figure 
S1a), but its walleye population is overestimated when using wall-
eye biomass (Figure S1b). This further supports that a few large 
fish produce less eDNA than an equivalent biomass of many small 
fish. Bearskin Lake, having a population of high density with aver-
age-sized individuals (Figure S3), was overestimated by regressions 
using both walleye density (Figure S1a) and walleye biomass (Figure 
S1b). This suggests our relationship may not hold for lakes with ex-
treme walleye abundance, though such lakes would be of minimal 
management concern.

Our mark–recapture walleye density and biomass metrics include 
only adult fish, whereas eDNA is presumably sourced from all life 
stages, presenting a complication for accurately assessing whether 
eDNA is best predicted by number or size of fish. In addition, mark–
recapture surveys were performed in early spring, likely before or 
during walleye spawning, whereas eDNA was collected in mid-July 
after walleye spawning, introducing a potential disconnect between 
the two methods. However, the inclusion of age-0 walleye CPUE 
data, collected in early fall, did not improve our models, suggesting 
that the reproductive differences among the walleye populations 
sampled did not explain significant variation in eDNA concentration. 
Because management of this fishery is based on adult populations, 
the strong correlation of eDNA with adult walleye density is useful 
from an applied ecological perspective.

4.2 | Year and agency as potential factors

The significance of mark–recapture agency as an interaction term 
in the simple model of walleye density versus eDNA concentration 
(no additional terms or weighting) may be an artifact of the large dif-
ference in ranges of the two agency groups’ walleye density values. 
Though the means of the two groups’ walleye densities were not 
significantly different (p >  .5; two-sample t test), the range of wall-
eye densities from lakes surveyed by GLIFWC is roughly half of that 
for lakes surveyed by WDNR (Figure S3). In addition, the sample size 
of the GLIFWC group (n = 7) is too small to make strong inferences. 
Therefore, we present models with no agency or agency interaction 
terms, but we recognize that additional sampling to expand the range 
of GLIFWC walleye densities could better determine whether the dif-
ferent mark–recapture methods used by the two agencies affects the 
relationship between eDNA concentration and walleye abundance.

4.3 | Qualitative analysis for applied management

To apply our results to real-world management scenarios, it may 
be helpful to analyze this quantitative data more qualitatively. 
The linear regression models described above treat walleye den-
sity as a continuous measure (individuals/ha). However, fisher-
ies managers in Wisconsin bin lakes into “high,” “medium,” and 
“low,” walleye categories, prescribing management strategies for 
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each category rather than individual lakes (Gregory Sass, WDNR, 
Boulder Junction, WI, personal communication, 2019). To test 
whether the eDNA assay correctly assigns our 22 walleye lakes 
into their qualitative management categories, we flipped the axes 
on our model to predict walleye density from eDNA concentration 
and then calculated Agreement Percentage and Cohen's Kappa 
coefficient between the predicted and observed walleye density 
values. We used three walleye density categories derived from 
WDNR’s management thresholds for walleye populations (Gregory 
Sass, WDNR, Boulder Junction, WI, personal communication, 
2019): “nonfishable” (0–3.7 individuals/ha), “fishable” (3.7–7.4 indi-
viduals/ha), and an ideal “management goal” (7.4 + individuals/ha).1 
Using these categories, we calculated an Agreement Percentage 
of 50% and a Kappa coefficient of 0.2, indicating “poor” agree-
ment between eDNA-predicted and field-observed walleye densi-
ties (Fleiss, 1981; Figure 2a). We repeated this qualitative analysis 
using only two categories, “nonfishable” (0–3.7  walleye/ha) and 
“fishable” (3.7 + walleye/ha), which yielded a greater Agreement 
Percentage of 82% and a Kappa coefficient of 0.4, indicating “fair 
to good” agreement (Figure 2b).

This qualitative analysis of the ability of eDNA to monitor 
walleye populations gives a different perspective on its utility for 
applied fisheries management. eDNA performed “fair to good” in 
correctly identifying populations as “fishable” or “nonfishable,” 

demonstrating its potential as a tool to assess population status 
across an important management strategy threshold. However, its 
“poor” ability to correctly assign population status using all three 
management categories demonstrates the significant amount 
of unexplained variation remaining in the relationship between 
eDNA and population size. This sensitivity to where we set cate-
gory thresholds suggests that this qualitative method may not be 
the best indicator of our model's performance. Nonetheless, its 
ability to distinguish “fishable” versus “nonfishable” populations 
suggests that eDNA could be an early-warning indicator of pop-
ulation decline. In lakes currently lacking monitoring, an eDNA 
survey could serve as a fishery “firewall” to protect against over-
harvest. If eDNA monitoring indicates a population is “fishable,” 
managers might be comfortable with business-as-usual strategies. 
But if eDNA returns a “non-fishable” result, it could alert manag-
ers to adjust management strategies or to prioritize that lake for a 
traditional mark–recapture survey.

4.4 | Uncertainty

When evaluating the uncertainty of a new monitoring method, it 
is important to consider that traditional methods contain uncer-
tainty too. Viewing a novel method's uncertainty as a tradeoff for, 
not an addition to, a traditional method's uncertainty is critical for 
fair assessment. Traditional mark–recapture surveys are only esti-
mates, possessing their own precision and accuracy like any other 
method—just precision and accuracy to which managers have be-
come accustomed over time. The uncertainty in eDNA that comes 
from not having a fish “in hand” may be difficult for some fisheries 
managers to look past, but when electroshocking debuted as a popu-
lation estimation method it, too, was initially met with skepticism 
(Jerde, 2019). Now, we regard electroshocking as “traditional” sam-
pling in comparison with eDNA.

The mean coefficient of variation (CV) of the traditional 
mark–recapture population estimates in our study was 17% (see 
supplementary material). However, in our linear regressions, we 
treated these population estimates as certain. Therefore, our re-
gression metrics (such as R2) reflect not only the uncertainty of 
using eDNA to estimate walleye density, but also the 17% CV built 
into the mark–recapture method's estimation of walleye density. 
It is difficult to directly compare the uncertainty of our eDNA and 
mark–recapture methods because our within-lake eDNA values 
are zero-inflated. Instead, we have tried to build the uncertainty 
of the eDNA method into the regression using the weighted least 
squares approach. Measurement error in an independent variable 
can lead to attenuation bias in linear regression estimates, which is 
a commonplace violation of regression assumptions because there 
will “nearly always be error in X, particularly in the field sciences” 
(McArdle, 2003). Based on the variance of our walleye abundance 
measurement errors as a proportion of the total variance in our 
walleye abundance observations, we approximate this bias is less 
than 2% of our regression estimates.

F I G U R E  2   Cohen's Kappa coefficients and Agreement 
Percentages between observed and predicted walleye (Sander 
vitreus) density (individuals/ha) values from our model, broken 
into (a) three or (b) two categories based on thresholds for walleye 
population management in the Ceded Territory of Wisconsin during 
2017 and 2018
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5  | CONCLUSIONS

Walleye eDNA recovered from lake surface water correlates 
strongly with walleye abundance in Wisconsin lakes. Our quantita-
tive eDNA survey (R2 = .81; n = 22) performs well above the average 
for quantitative eDNA studies in natural systems (R2 = .50). Though 
eDNA lacks critical demographic information gained from tradi-
tional surveys, the cost and personnel requirements of mark–recap-
ture surveys currently limit monitoring to ~5% of walleye lakes in 
Wisconsin's Ceded Territory. Implementing eDNA surveys as an ad-
ditional population assessment tool would provide complementary 
information on many more lakes than are currently monitored. The 
ability of our eDNA survey to correctly assign lakes to real-world 
management categories (“fishable” vs. “nonfishable”) could provide 
an early warning for at-risk lakes in need of attention, more widely 
informing management of this important inland fishery.

The inland fisheries case we present here is contextualized by 
a single species approach in a limited set of systems, but it demon-
strates the powerful potential of quantitative eDNA for monitoring 
populations. Future research to understand the principles governing 
the production, persistence, and capture of eDNA, as well as the 
standardization of eDNA survey protocols, may help translate spe-
cific relationships between eDNA concentration and organism abun-
dance into general tools for ecological research, natural resource 
management, and conservation (Jerde, 2019).

DATA AVAIL ABILIT Y S TATEMENT
Environmental DNA starting quantities for each sample as well as 
mark–recapture data and other sampling location information (site 
coordinates, qPCR performance metrics, abiotic lake information, 
etc.) are included in the Supporting Information of this article. 
These data are also archived with the Environmental Data Initiative 
[https://doi.org/10.6073/pasta​/1dd7c​bc2c6​5c8ea​7804e​3582e​
e3f4d90].

ENDNOTE
	1	 Management thresholds are converted here from 1.5 to 3.0 individu-

als acre-1. 
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APPENDIX 
BIOMA SS C ALCUL ATION
To calculate population biomass for lakes, we adapted methods from 
Embke et al. (2019), as follows. First, we assigned lengths to all fish 
that were captured but not individually measured. For lakes with 
individual fish length information for most fish (2017: n = 4; 2018: 
n = 9), we randomly sampled with replacement from the available 
subset of length data for that lake-year combination and then as-
signed those values as lengths to the unmeasured fish from that 
same lake-year combination. The remaining lakes (2017: n  =  10; 
2018: n = 9) did not have any individual fish length measurements. 
Instead, all fish collected from these lakes were assigned to one of 
four length bins (0–304, 305–380, 381–508, >508 mm). From this 
information, we randomly sampled with replacement integers from 
each bin's range and assigned those integers as lengths to the un-
measured fish in that bin. We capped the final length bin at 880 mm 
as this was below the maximum length of fish collected in all lakes.

Once we had assigned length measurements to every fish cap-
tured, we used available weight data to develop lake-specific 
length–weight regressions. We used those regressions to assign a 
weight to each fish and calculate total population biomass (kg/ha) 
for each lake. For lakes in which some fish received direct length 
and weight measurements, we calculated log-log length–weight re-
gressions from these fish to assign weights to fish that were not di-
rectly weighed. For lakes in which no fish received direct length and 

weight measurements, we calculated log-log length–weight regres-
sions using data from that lake's most recent mark–recapture survey 
in which length and weight were directly measured for some fish, 
again assigning weights to the fish with unknown weights (in this 
case, all fish).

We determined whether each lake-specific regression was valid 
according to specific criteria: number of fish >25, R2  >  .85, and 
2 < b < 4 (b = slope). Our criteria range for b was adapted from Froese 
(2006), who empirically demonstrated that, across systems, mean 
values of b were between 2.5 and 3.5 for over 1,700 fish species. We 
expanded the acceptable range of b because individual lake values 
likely exhibit greater variability than Froese's cross-system approach. 
If a lake-specific regression violated these criteria, we calculated 
length–weight regressions from directly measured walleye found in 
regional lakes of the same WDNR “lake classification” (e.g., cool and 
clear, warm and dark, and riverine/reservoir; Rypel et al., 2019). We 
then applied the appropriate lake-class length–weight regression to 
all fish with unknown weights in each remaining lake. Following the 
assignment of weights to all fish using length–weight regressions, we 
summed individual weights to calculate total walleye biomass (kg/
ha) for each lake.
AT TENUATION BIA S C ALCUL ATION
Despite measurement error in our walleye abundance estimates, we 
analyzed the relationship between walleye abundance and eDNA 
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concentration using OLS linear regression. We determined the rela-
tive attenuation bias in our regression estimates introduced by this 
measurement error to be small because the variance of measurement 
error of walleye abundance is small relative to the total variance in 
our walleye abundance observations. Using the following calcula-
tion adapted from McArdle’s (2003) “Practical Considerations” for 
addressing measurement error in regressions, we approximate the 
relative attenuation bias to be ~2%.

where x is walleye density (individuals hectare-1) and measurement 
error in x is the standard deviation of walleye density derived from 
the CV of each mark–recapture adult walleye population estimate (see 
supplementary material).

(A1)Relative Attenuation Bias =
p

(1−p)
where p=

var(measurement error in x)

total var (x)


