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Abstract Agricultural nonpoint source pollution remains a

persistent environmental problem, despite the large amount

of money that has been spent on its abatement. At local

scales, agricultural best management practices (BMPs) have

been shown to be effective at reducing nutrient and sediment

inputs to surface waters. However, these effects have rarely

been found to act in concert to produce measurable, broad-

scale improvements in water quality. We investigated

potential causes for this failure through an effort to develop

recommendations for the use of riparian buffers in address-

ing nonpoint source pollution in Wisconsin. We used

frequency distributions of phosphorus pollution at two spa-

tial scales (watershed and field), along with typical stream

phosphorus (P) concentration variability, to simulate benefit/

cost curves for four approaches to geographically allocating

conservation effort. The approaches differ in two ways: (1)

whether effort is aggregated within certain watersheds or

distributed without regard to watershed boundaries (dis-

persed), and (2) whether effort is targeted toward the most

highly P-polluting fields or is distributed randomly with

regard to field-scale P pollution levels. In realistic imple-

mentation scenarios, the aggregated and targeted approach

most efficiently improves water quality. For example, with

effort on only 10% of a model landscape, 26% of the total P

load is retained and 25% of watersheds significantly

improve. Our results indicate that agricultural conservation

can be more efficient if it accounts for the uneven spatial

distribution of potential pollution sources and the cumulative

aspects of environmental benefits.
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Introduction

Agricultural runoff is the dominant source of sediment,

phosphorus, and nitrogen pollution to aquatic ecosystems

(USEPA 2000). Excess loading of nutrients in the form of

nonpoint source (NPS) pollution has led to widespread

eutrophication of lakes, rivers, and estuaries, and resultant

ecological degradation and loss of ecosystem services

(USEPA 1990; NRC 1992; USEPA 1996; Turner and

Rabalais 1994; Burkart and James 1999; Carpenter and

others 1998). Inputs of fine sediments degrade aquatic hab-

itat (Waters 1995) and are among the most widespread

pollutants to rivers and streams (USEPA 2000). Because the

causes and extent of these effects are well understood,

reducing agricultural NPS pollution and improving stream

water quality has become an important priority of many state

and federal resource management agencies (USEPA 2002).

Application of agricultural best management practices

(BMPs), such as riparian buffers, can reduce inputs of

nutrients and sediments to streams (e.g., Mendez and others

1999; Nerbonne and Vondracek 2001; Bishop and others

2005). To encourage their use, state resource management

agencies and the U.S. Department of Agriculture (USDA)

have developed programs that offer incentives to farmers to

implement BMPs. For example, since 1987, the USDA

Conservation Reserve Program has paid $29.7 billion to
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farmers to implement conservation practices (USDA

2006). Despite the large amount of money distributed

through these voluntary programs, they have not generally

produced measurable improvements in stream water qual-

ity (Wolf 1995; Meals 1996; Boesch and others 2001),

prompting the search for ways to improve the effectiveness

of pollution reduction programs.

The USDA has made it a priority to target agricultural

conservation practices where they will ‘‘generate the most

profound or widespread environmental benefits for a given

[cost]’’ (Hansen and Hellerstein 2006). Theoretically, tar-

geting should be particularly important, since available funds

can only pay for conservation practices on a small fraction of

agricultural lands. However, there are many ways to define

environmental benefits, and many scales at which these

benefits may be realized, some of which are more easily

measured than others. These variables lead to program design

questions, such as: Given limited financial resources, should a

program aim to greatly improve water quality in a few

streams or strive for modest improvements in water quality

across a large watershed? Furthermore, given the political

difficulties with unequal application of regulations or pay-

ments, how much additional benefit is likely to be realized by

a targeted program compared to a voluntary program?

A recent policy-oriented research effort in Wisconsin

provided an opportunity to explore these and other questions.

In 2002, legislative efforts to revise NPS pollution regulations

(Wisconsin Administrative Statute NR151) produced con-

troversy among stakeholders surrounding the issue of riparian

buffer implementation, leading to the establishment of a

multi-stakeholder group called the Wisconsin Buffer Initia-

tive (WBI) (UW-CALS 2005). The advisory committee of

the WBI was composed of academic researchers, state and

federal regulatory agencies, as well as agricultural and

conservation groups, and was asked to design a set of

recommendations based on the best available science con-

cerning the use of riparian buffers to manage NPS pollution in

Wisconsin. The WBI participants seized upon this as an

opportunity to develop an innovative program that builds on

recent conceptual and empirical advances in the under-

standing of NPS pollution and that considers buffers as only

one option in a suite of available practices (UW-CALS 2005).

Here we present the first of a series of three articles

deriving from our experience working with the Wisconsin

Buffer Initiative. The goal of this article is to develop a

geographical implementation framework for NPS pollution

control. This framework is meant to guide the use of multi-

ple, complementary BMPs, rather than solely riparian

buffers. We begin by summarizing evidence that existing

NPS pollution control programs have not produced signifi-

cant, broad-scale water quality improvements, despite

numerous studies showing that the management practices

supported by these programs are effective at local scales. We

suggest that this apparent contradiction can be explained by

two primary factors. First, data from Wisconsin farms and

streams indicate that sources and transport of NPS pollutants

are distributed log-normally at multiple spatial scales across

agricultural landscapes. Therefore, targeting pollution con-

trol toward the high ends of these distributions would likely

result in greater environmental gains per unit of management

effort. However, most government-sponsored NPS pollution

control programs have additional objectives (e.g., reducing

excess crop production) and politically-driven design ele-

ments (e.g., equal-opportunity, voluntary participation) that

tend to limit targeting of BMPs according to their capacity

for reducing NPS pollution. Second, seasonal and weather-

driven variability in the concentrations of pollutants in

receiving waters may make the detection of statistically-

significant water quality changes difficult under common

BMP application levels and monitoring approaches. In other

words, pollution control effort is often too sparsely distrib-

uted across the landscape to make an appreciable difference

in any one place.

We use statistical simulations to evaluate program effi-

ciency gains that could be realized by geographically

targeting and aggregating pollution control effort (i.e.,

extent of BMP implementation or monetary cost). Specif-

ically, we estimate two types of cost/benefit curves (total

pollution reduction and proportion of watersheds

improved) for four geographical allocation approaches.

Selection of a ‘‘best approach’’ depends on the relative

importance of the two types of benefit, which involves a

value judgment. However, in realistic implementation

scenarios, one approach (aggregated/targeted) not only has

the highest average benefit, but is also most suited to

implementation in an adaptive management framework. To

conduct these analyses, we had to assemble empirical data

from multiple sources because no suitable unified dataset

exists. Admittedly, this approach may make our results less

generalizable than if the study was based on a single, multi-

scale dataset collected with uniform methods across a

variety of agricultural landscapes. To compensate, we use a

sensitivity analysis to identify which model input uncer-

tainties most strongly influence the results.

In the two following articles, we further develop the

aggregated/targeted approach to NPS pollution control.

First, Maxted and others (this issue) consider issues of

watershed scale and delineation, and present a set of

watersheds to serve as implementation and management

units for the program. Second, Diebel and others (this

issue) model broad-scale patterns of NPS phosphorus and

sediment loading to streams, and provide a ranking of

watersheds based on water quality restoration potential.

Together, these articles provide a conceptual advance in

the landscape-scale management of agricultural nonpoint

source pollution.
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Can Agricultural Conservation Practices Improve

Stream Water Quality?

The Wisconsin Buffer Initiative initially sought to quantify

the pollution reduction potential of riparian buffer strips

and how this potential might vary with width and landscape

setting. Literature reviews on the functions and perfor-

mance of riparian buffers (Desbonnet and others 1994;

Correll 1999; Wenger 1999) indicate that buffers can retain

large proportions of the phosphorus (56%) and sediment

(78%) that enters them in surface runoff, and that they can

also be effective at removing nitrate (51%) dissolved in

shallow groundwater (percentages are averages from 52

studies cited in Desbonnet and others 1994). Buffers are

less effective at retaining: sediment, when channelized flow

occurs (Dillaha and others 1989; Daniels and Gilliam

1996); phosphorus, when buffer soils become saturated

with phosphorus (Osborne and Kovacic 1993); and nitrate,

when subsurface flow paths do not intersect the root zone

of riparian vegetation (Lowrance and others 1997). Thus,

augmenting (and in some cases, replacing) riparian buffers

with upland management practices such as reduced tillage

and nutrient application or crop changes may better

improve water quality in some situations.

Natural resource management agencies have long rec-

ognized the complimentary abilities of a wide array of

BMPs and have therefore designed programs to fund the

application of each practice where it is likely to be most

effective (e.g., Hansen and Hellerstein 2006). Given the

large amount of money that has been distributed to farmers

through such programs, one might expect that water quality

monitoring would detect significant improvements where

BMPs have been implemented. However, this has often not

been the case. We use the Wisconsin Priority Watershed

Program (PWP) as a case study.

Between 1979 and 2006, the Wisconsin PWP provided

approximately $201 million to counties and landowners to

address land management activities that contribute to urban

and rural runoff (Wisconsin Legislative Fiscal Bureau

2007). Funds were used to cost-share the implementation

of BMPs by landowners in 87 ‘‘priority watersheds’’ (mean

area = 369 km2) where the need for NPS water pollution

abatement was deemed most critical (Wisconsin Admin-

istrative Statute NR120). Funded practices included tillage

and nutrient management changes, fencing to restrict ani-

mal access to streams, streambank shaping and reseeding,

and structural barnyard improvements to reduce manure

runoff. Participation in the program was voluntary, and for

most of the program lifespan, there was no way to spe-

cifically induce owners of highly polluting lands to

participate. In individual priority watersheds, an average of

38% of eligible landowners implemented one or more

BMPs, although this figure ranged widely—from 4%

to 82% (Wisconsin Department of Natural Resources,

unpublished data). During an interim program evaluation in

1995, sampling-based water quality assessments for 20 of

the priority watersheds found no statistically significant

improvements, and it appeared that insufficient landowner

participation was the reason (Wolf 1995). This finding is

consistent with other studies of water quality (Davie and

Lant 1994; Meals 1996; Boesch and others 2001) and

biological (Wang and others 2002, 2006) response to

agricultural BMPs. Subsequently, more intensive evalua-

tions in a few of the priority watersheds found some

improvements (Graczyk and others 2003; Corsi and others

2005), but outcomes in most watersheds have not been

thoroughly evaluated.

In many cases, the effects of agricultural BMP imple-

mentation on stream water quality are never measured. For

example, in a national database of river restoration efforts

(Bernhardt and others 2005), only 13% of the 5141

‘‘riparian management’’ project records included a moni-

toring component. However, even if all projects were

monitored, there are several reasons why improvements

would not be detected in many cases. First, agricultural

BMPs are often implemented for reasons other than the

improvement of water quality, including the creation of

wildlife habitat and the reduction of excess crop production

(USDA 2003). The locations that best serve these goals

may not be the same ones that would best contribute to

water quality improvement. Second, most programs,

including the Wisconsin PWP and the largest federal pro-

grams (Conservation Reserve Program and Conservation

Reserve Enhancement Program) are voluntary. Though

posited on principles of fairness and accessibility, we

contend that these arguably positive aspects of the program

are also weaknesses, in that the program fails to ensure that

the largest polluters participate. And third, partially as a

result of the previous two factors, BMP implementation is

typically dispersed geographically. While dispersed

implementation may lead to small pollutant loading

reductions to many water bodies, these reductions may not

translate into statistically detectable water quality

improvements if background variability in stream water

pollutant concentrations (e.g., weather-related) obscures

those changes. In the following sections, we examine how

adjusting these program design elements can more effi-

ciently cause water quality improvement.

Distribution of Nonpoint Source Pollution

on Agricultural Landscapes

Natural and social scientists have traditionally emphasized

the importance of characterizing the average behavior of a

population, with the implicit assumption that aspects of the
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natural world that scientists are interested in can be

approximated by a normal frequency distribution. In con-

trast, Limpert and others (2001) provided diverse examples

of the natural world being characterized by log-normal

probability distributions, and highlighted the important

implications of this pattern. This idea of a ‘‘log-normal

world’’ may be applicable to the problem of nonpoint source

pollution on agricultural landscapes. Nowak and others

(2006) proposed that among individual farm fields, both

impacts of management practices and biophysical vulnera-

bility to pollution follow log-normal frequency distributions.

Because these factors interact to determine the pollution

contribution of any one field (Wischmeier and Smith 1978),

the resulting distribution of pollution will be even more

strongly log-normal than either distribution on its own. Thus,

the extreme situations at the tail of these frequency distri-

butions have disproportionately large effects, and have the

potential to drive pollution patterns at broad spatial scales.

We examined empirical phosphorus (P) pollution data

from Wisconsin for evidence of this phenomenon at two

spatial scales—within and among small watersheds. At the

within-watershed scale, we used P index values (http://

wpindex.soils.wisc.edu/) for 62 randomly-selected cropped

fields (mean area = 5 ha) in a 20 km2 watershed in

southwestern Wisconsin (Hefty Creek, Green County)

(L. Good, unpublished data). The Wisconsin P index uses

soil P content, edaphic characteristics, topography, crop

rotation, and management practices to estimate average

annual per-area P loss across the rotation. Unlike most P

indexes, which are uncalibrated P loss risk assessments

(Sharpley and others 2003), the Wisconsin P index esti-

mates actual losses, and has been validated with year-round

runoff monitoring on 18 Wisconsin farm fields (Bundy and

others 2008). The frequency distribution of the Hefty Creek

P loss estimates is best fit by a log-normal probability

distribution (Kolmogorov-Smirnov test, pnormal = 0.03,

plog-normal = 0.74), with a multiplicative standard deviation

(s*) of 2.43 (Fig. 1a).

At the among-watershed scale, we used estimates of

annual unit-area total P loads (kg/km2/year) for 1005 small

(20–100 km2) watersheds in Wisconsin with at least a

moderate amount of agricultural land ([30%) (Diebel and

others, this issue). The frequency distribution of these P

load estimates is also best fit by a log-normal probability

distribution (Kolmogorov-Smirnov test, pnormal = \0.001,

plog-normal = 0.02), with s* = 2.32 (Fig. 1b). Assuming

that within-watershed proportional P loss distributions in

other Wisconsin watersheds are similar in shape to the

distribution observed in the Hefty Creek watershed, the

distribution of individual field P losses across Wisconsin is

also log-normal, but with a higher s* (2.83) than either of

the two distributions that form it (Fig. 1c is the joint

probability of the distributions in Fig. 1a and b).

These distributions conflict with the predominant per-

ception of NPS pollution as being diffusely distributed across

the landscape. This new perspective shares some surprising
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Fig. 1 Log-normal distribution of phosphorus pollution at multiple

spatial scales: (a) P Index values from 62 fields in the Hefty Creek

watershed, Green County, Wisconsin; (b) Modeled P loads from 1005

small agricultural watersheds in Wisconsin; (c) Modeled percent

contribution of 10,000 fields to landscape P load (joint probability of

distributions in a and b)
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commonalities with point source pollution: the problem (and

the solution) originates from a limited number of locations

on the landscape. An important difference is that it is easy to

locate point sources, while identifying NPS ‘‘hotspots’’ can

be very difficult. Nevertheless, if hotspots can be identified

and managed appropriately, significant pollution reduction

could be efficiently achieved. Later in this article, we use the

above frequency distributions, which are the best available

for Wisconsin, to parameterize a model that quantifies this

increased efficiency.

Measuring the Effects of Best Management Practices

There are two primary approaches for measuring the ben-

efits of NPS pollution reduction. Measured water quality

change approaches use before-and-after water quality

measurements to estimate the extent and statistical signifi-

cance of water quality improvement in a water body whose

watershed has been treated with BMPs. This approach

sometimes also uses measurements on an unmanipulated

watershed to control for extrinsic water quality influences

such as weather. Modeled pollutant reduction approaches

use empirical or mechanistic relationships between bio-

physical and management characteristics to estimate

pollution loading from individual fields, farms, or sub-

watersheds before and after the implementation of BMPs.

Model estimates for individual land units can then be

aggregated up to estimate total pollutant load reduction in

watersheds or political land units.

Government conservation programs often evaluate their

programs with the modeled pollutant reduction approach.

For example, the Wisconsin Priority Watershed Program

(described above) used two models—BARNY (WDNR

1994a) and WINHUSLE (WDNR 1994b)—to estimate

pollutant reductions resulting from BMP implementation.

These models estimated that, relative to pre-implementa-

tion loadings, an average of 37% of phosphorus and 24% of

sediment was prevented from entering surface waters in

these watersheds (Holden and others 2006). As mentioned

above, however, these estimated load reductions generally

did not result in statistically significant water quality

changes in receiving waters. One possible explanation for

the incongruence of these two monitoring approaches is

that the models overestimated the effectiveness of BMP

implementation (Stuntebeck and Bannerman 1998). Water

quality response to changes in land management may have

also been delayed if nutrients or sediments accumulated as

a result of past practices (detained) remain susceptible to

transport by water (Carpenter 2005; Knox 2006). Another

explanation is that the modeled reductions did occur, but

that they were simply not detectable due to background

variability in pollutant loads. This background variability is

typically weather-driven, and in most water quality studies,

it is seen as bothersome statistical noise, to be controlled

for, if possible (Spooner and others 1987). Alternatively, it

is possible to use the amount of background variability as a

guide for setting target pollutant reductions. In other words,

one could ask, ‘‘Given a certain variance in a water quality

parameter, and given a realistic sampling regime for

monitoring that parameter, how much would that parameter

have to change before the intervention effect is likely to be

statistically detected?’’ This amount of change could be

translated into a minimum amount of program implemen-

tation effort that should be expended on any one watershed.

In the following section, we use statistical simulations to

address this question, coupled with a comparison of the

relative efficiency of voluntary and targeted programs.

Methods

The Model Landscape

We compared four approaches for allocating conservation

effort across a model agricultural landscape. For sim-

plicity, we limited our evaluation of these approaches to

their ability to reduce phosphorus (P) pollution at two

scales: landscape and watershed. The P load from the

landscape (Ll) is the sum of P loads (Lw) from 100

equally-sized, spatially-independent watersheds. Values of

Lw were drawn randomly from the empirical distribution

of the WBI watershed P loads (Fig. 1b). To simplify

calculations involving percent reductions, watershed loads

were converted to proportions of the landscape load.

Thus, the standardized landscape load (kl) was set equal

to 1, and the proportional watershed loads (kw) were

calculated as:

kw ¼ Lw=
X100

w¼1

Lw ð1Þ

Each watershed is composed of 100 equally-sized fields.

P loading from these fields is the only source of P to

streams in the model landscape. In each watershed, P loads

from fields (Lf) were assigned randomly selected values

from the empirical distribution of the Hefty Creek fields

(Fig. 1a). The proportional contribution of field f to the

load from its watershed w (kf) is:

kf ¼ Lf =
X100

f¼1

Lf ð2Þ

and the proportional contribution of field f to the total

landscape P load (kf,w) is:

kf ;w ¼ kf � kw ð3Þ
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Thus,

kl ¼
X100

w¼1

kw ¼
X10;000

f¼1

kf ;w ¼ 1 ð4Þ

Each spatial allocation approach was then defined by the

order in which conservation practices are applied to these

10,000 fields. The approaches differ in two ways: (1)

whether effort is aggregated within certain watersheds or

distributed without regard to watershed boundaries

(dispersed), and (2) whether effort is targeted toward the

most highly P-polluting fields or is distributed randomly

with regard to field-scale P pollution levels. Simplified

illustrations of these approaches are shown in Fig. 2.

Description of the Allocation Approaches

In the dispersed/random approach, fields are selected for

BMP implementation in random order from among the

10,000 model fields. In the aggregated/random approach,

fields are randomly selected from the watershed with the

highest P load until the stop point (defined below) is

reached. The same procedure is then applied to the

watershed with the second highest P load, and so on. When

BMP implementation has reached the stop point in all

watersheds, the remaining fields are selected in random

order. In the dispersed/targeted approach, fields are selec-

ted in descending order of percent contribution to the total

landscape P load, regardless of watershed membership.

And in the aggregated/targeted approach, fields are selected

in descending order of percent P load contribution from the

watershed with the highest P load until the stop point is

reached. The same procedure is then applied to the

watershed with the second highest P load, and so on. When

BMP implementation has reached the stop point in all

watersheds, the remaining fields are selected in descending

order of percent contribution to the total landscape P load,

regardless of watershed membership.

Description of the Benefit Indices

We compared these four approaches by implementing them

on the model landscape and tabulating two benefit indices

across the range of landscape BMP implementation levels

(Il, defined as the proportion of all 10,000 fields where

BMPs are implemented). The first benefit index is the

proportion of the total landscape P load that is eliminated

(modeled pollutant reduction, Rl ¼ 1� k0l, where k0l is the

landscape P load following BMP implementation). The

second benefit index is the proportion of watersheds where

a statistically significant reduction in the median stream

water P concentration is observed (measured water quality

change, �pwðRf ; IwÞ). This second index is an example of the

type of nonlinear, threshold relationship between effort and

benefit that has often been posited in the ecological and

restoration science literature (e.g., Wang and others 1997;

Carpenter and others 1999; Brazner and others 2004).

When such a relationship exists, there is an optimal level of

effort that maximizes efficiency (benefit/effort) (Statzner

and others 1997), herein called the stop point. For both

indices, we assumed that BMP implementation would

reduce the P load from an individual field (Rf) by 75%

(average P reduction potential estimated in Diebel and

others [this issue]), and that reductions in P loading from

fields would directly translate into the same percent

reductions in stream P loads. Because the model calculates

percent reductions, this assumption is reasonable even

when in-stream processes remove P, as long as the rate

of removal is proportional to the incoming load. However,

the model will overestimate stream P reductions where

detained P contributes appreciably to stream loads. We also

assumed that the cost of BMP implementation is constant

among fields. This is a reasonable assumption even when

costs vary, as long as benefits are more variable than and

uncorrelated with costs (Babcock and others 1997). Thus,

BMP implementation level, effort, and cost are considered

synonymous.

Aggregated/RandomAggregated/Targeted

Dispersed/RandomDispersed/Targeted

Fig. 2 Simplified illustrations of geographical allocation approaches.

Black lines form a stream network; spatially-independent watersheds

are shaded according to their contribution to NPS pollution

(darker = higher); Black dots (20 in each approach) are locations

of BMPs (for illustrative purposes, locations near streams reduce

more pollution)
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Statistical Simulations of Water Quality Change

We used statistical simulations to examine how the

probability of detecting a statistically significant water

quality improvement at the outlet of a watershed (pw)

depends on the BMP implementation level in that

watershed (Iw, defined as the proportion of the 100 fields

in each watershed where BMPs are implemented), and

subsequently to estimate the stop points for the aggre-

gated approaches. This process consisted of three steps:

(1) Estimating pw(Rw), the relationship between pw and

the intervention level Rw (BMP-induced P reduction in

watershed, as a proportion of the pre-BMP mean); (2)

Using pw(Rw) and Rf (BMP-induced P reduction from

individual fields; 75% in baseline scenario, but varied in

sensitivity analysis) to calculate pw(Rf, Iw) for random and

targeted approaches; (3) Calculating the stop points (I�wr

and I�wt) as the values of Iw that maximize the benefit/

effort ratio (pw[Rf, Iw]/Iw) for the random and targeted

approaches, respectively.

Step One

To detect the effect of an intervention on a variable

parameter, such as stream P concentrations, the magnitude

of the intervention must outweigh the variability of the

parameter. We analyzed a separate empirical dataset to

characterize the distribution of stream P variability in

Wisconsin and subsequently to parameterize the model.

This dataset consists of time series of P concentrations

from 153 Wisconsin streams with more than 30% water-

shed agriculture (Robertson and others 2006) and provides

the best available estimate of P variability in Wisconsin

streams. Each time series consisted of six mid-monthly P

concentration samples collected during the growing season

(May–October) of 2001 or 2002. To simulate sample sets

from a hypothetical pre-intervention monitoring program

(6 monthly samples over 4 growing seasons), we fit log-

normal frequency distributions to the sample values for

each stream and then generated 24 random numbers from

each distribution. For each stream, we then created post-

intervention sample sets by multiplying each value in a

second pre-intervention sample set by a range of Rw values

(0–1, increments of 0.05). This procedure scaled the sam-

ple means and standard deviations proportionally, in

accordance with the trend seen across the range of mea-

sured values (r = 0.58l - 0.004, intercept not different

from zero, r2 = 0.57). We then conducted Wilcoxon rank-

sum nonparametric tests to compare the median of the pre-

intervention samples to the median of the post-intervention

samples for each stream at each value of Rw (Graczyk and

others 2003; Corsi and others 2005). We repeated these

simulated experiments 20 times and then calculated the

mean percentage of streams (equal to pw[Rw]) where a

significant (p \ 0.01) difference was detected at each value

of Rw. To calculate pw(Rw) for watersheds in the model

landscape, a modified logistic function was fit to this

relationship (line labeled ‘‘n = 24’’ in Fig. 3):

pw ¼
1:017

1þ 59ðe�12:8�RwÞ � 0:017 ð5Þ

Step Two

Rw(Iw) was calculated as:

Rw ¼ Rf

X100�Iw

f¼1

kf ;w

 !
ð6Þ

where fields are selected in rank order (highest to lowest)

of kf,w in targeted approaches and in random order for

random approaches. Substituting this function for Rw in

equation 5 allows calculation of pw(Rf, Iw).

Step Three

The stop points (I�wt and I�wr) were identified as the maxima

of pw(Rf, Iw)/Iw in the targeted and random approaches,

respectively (Fig. 4).
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intervention). On the n = 24 points, error bars are ±1 standard

deviation based on 20 simulated experiments (variability was similar

for the other two sample sizes). Low and high threshold curves are

hypothetical (see discussion)
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Calculation of the Benefit Indices

Using the field selection algorithms defined above, the

modeled pollutant reduction benefit index Rl was calcu-

lated as:

Rl ¼ Rf

X10;000�Il

f¼1

kf ;w

 !
ð7Þ

and the measured water quality change benefit index

�pwðRf ;IwÞ was calculated as:

�pwðRf ;IwÞ ¼

P100

w¼1

pwðRf ;IwÞ

100
ð8Þ

where the pw(Rf,Iw) are calculated separately for each

watershed using equations 5 and 6. �pwðRf ;IwÞis equivalent

to the proportion of watersheds where a significant P

reduction is detected.

Sensitivity Analysis

We tested the sensitivity of the relative performance of the

allocation approaches to parameter values and assumptions

that differ from the baseline scenario described above

(Table 1). First, BMP-induced P reduction (Rf) was varied

from 40% to 90% to reflect uncertainty in both the theo-

retical and operational performance of these practices

(Gitau and others 2005). Second, the frequency distribu-

tions of P losses at both watershed and field scales was

changed from log-normal to normal (with the same means

as the empirical log-normal distributions, and standard
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deviations equal to mean/3). This change was intended to

address uncertainty about whether the empirical distribu-

tions represent the true distributions for Wisconsin, and to

examine how the allocation approaches would perform in

more uniform agricultural landscapes. Third, we varied the

number of pre- and post-intervention water samples to

represent shorter (12 samples) and longer (48 samples)

monitoring periods. We use the results of this sensitivity

analysis to identify influential variables and important

uncertainties.

Results

Based on the simulated experiments, the probability of

observing a statistically significant P reduction in Wis-

consin agricultural streams is related to the intervention

level by a sigmoid (threshold) function (Fig. 3). In any one

stream, the threshold is abrupt, but because P concentration

variance is not consistent or predictable among streams, the

cumulative probability density function for a randomly

chosen stream is more gradual. Based on this function, the

optimal levels of effort in a watershed—the stop points—

are 59% of randomly-chosen fields (I�wr) or 29% of targeted

fields (I�wt) in the baseline scenario (Fig. 4). The stop points

are sensitive to variation in all model parameters; targeted

stop points ranged from 21% to 55%, and random stop

points from 49% to 100%, among scenarios (Table 1). For

a given scenario, the targeted stop point was about half of

the random stop point, except when the field-level P loss

distribution was normal, where it was about three-fourths.

The four allocation approaches perform differently

according to our two evaluation methods (Fig. 5). We use

cumulative net benefit (benefit/effort) as a common

evaluation criterion. This criterion is different than

instantaneous efficiency (marginal change in benefit per

unit effort), which is an appropriate criterion for selecting

sites in iterative site selection algorithms (Hyman and

Leibowitz 2000), but which is not useful for evaluating the

relative performance of the approaches presented here. The

relevant sections of the benefit/effort curves (Fig. 5) are at

low conservation effort because most state and federal

programs charged with controlling NPS pollution do not

have sufficient funds to implement BMPs on a substantial

proportion of the landscape. For example, the Wisconsin

PWP helped pay for BMPs on approximately 10% of farms

in the state during its period of activity (Wisconsin

Department of Natural Resources, unpublished data).

Based on the modeled pollutant reduction index

(Fig. 5a), the dispersed/targeted approach creates the most

benefit at all levels of effort. The aggregated/targeted

approach is next best, and at low and high effort performs

nearly as well as dispersed/targeted. The aggregated/

random approach performs well at low effort, but becomes

equivalent to the dispersed/random approach once the stop

point has been reached in all watersheds. The relative

performance of the allocation approaches was only sensi-

tive to the distribution of P losses. Aggregation and

targeting are particularly important when among-watershed

and among-field P losses, respectively, are log-normally

distributed (Table 1).

Based on the measured water quality change index

(Fig. 5b), the aggregated/targeted approach creates the

most benefit at all levels of effort, particularly with high

BMP performance and log-normal P loss distributions at

the among-field scale (Table 1). The dispersed/targeted

approach performs slightly better than the aggregated/ran-

dom approach up to moderate effort, in part because of the
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Fig. 5 Benefit/cost curves for the four geographical allocation

approaches in the baseline scenario (see Table 1). (a) Benefit is the

reduction in P pollution from entire model landscape (Rl); (b) Benefit

is the proportion of watersheds where a statistically significant

difference is observed in stream water P concentration (�pðRf ; IwÞ)
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high P reduction efficiency of targeting, and in part because

of de facto aggregation of highly polluting fields. The

dispersed/random approach performs particularly poorly at

low levels of effort, but becomes comparable to other

approaches at higher levels, where most large pollution

sources are addressed and most watersheds have high

levels of BMP implementation.

The dispersed/random approach has the least structure

of all the approaches, and therefore can be considered a

baseline to which others can be compared. It is clear that

adding a targeting or an aggregating component to this

baseline approach improves program efficiency according

to both evaluation methods. Targeting, by itself, improves

performance more than aggregating, particularly for land-

scape-scale P reduction. However, targeting without

aggregating would be impractical to implement, since it

would require estimating pollutant loss from all fields in

the landscape. While we did not formally evaluate the

impact of assessment costs on program efficiency, these

costs are likely to be substantial and offset the benefits of

this approach.

Combined targeting and aggregating of agricultural

BMPs can most efficiently cause measurable stream water

quality changes. The aggregated/targeted approach is most

efficient overall; for example, with effort on only 10% of

the landscape in the baseline scenario, 26% of the total

agricultural NPS P load would be eliminated and 25% of

watersheds would significantly improve. The aggregated/

targeted approach is a streamlined approximation of an

iterative site selection approach, where the benefit derived

from each site is dependent on which sites have already

been selected (Hyman and Leibowitz 2000). The hierar-

chical spatial organization of potential benefit in

agricultural landscapes allows this streamlined method to

function much like a true iterative approach, but without

the necessity of re-evaluating site-scale instantaneous

efficiency at each step. Furthermore, the hierarchical

method for identifying potential sites for management

action can reduce assessment costs.

The sensitivity analysis indicates that the superiority of

the aggregated/targeted approach is robust to uncertainties

in model parameters and to assumption choices. With

BMPs on 10% of the landscape, the aggregated/targeted

approach had the highest average (mean of benefit indices)

efficiency for all scenarios (Table 1). Increasing the num-

ber of water quality samples decreased the stop points and

increased the likelihood of observing significant differ-

ences at a given level of effort. However, these changes

were proportional among approaches. Increasing the

assumed effectiveness of BMPs (Rf) exaggerated differ-

ences among approaches, particularly according to the

measured water quality change index. In particular, with Rf

at 40%, differences between all the approaches, except

dispersed/random, were minimal. The effect of changing P

loss distributions from log-normal to normal was different

for the two benefit indices. When done at the among-field

scale, it reduced the relative ability of targeting to improve

water quality, whereas doing so at the among-watershed

scale most strongly reduced the ability of both targeting

and aggregating to reduce landscape-scale P loss. Together,

these findings suggest that targeting and aggregating NPS

pollution reduction will be most useful in highly variable

agricultural landscapes and when BMPs are effective.

Discussion

Thresholds

Targeting agricultural conservation effort toward the larg-

est sources of pollution can dramatically improve the

efficiency of landscape-scale pollution reduction (Fig. 5a)

(see also Hansen and Hellerstein 2006). However, this

approach fails to consider the value of cumulative benefits

at discrete, relatively small scales. The relationship

between nutrient levels and the ecological condition of

running waters may often be nonlinear (e.g., Dodds and

others 2002; Brazner and others 2004; Wang and others

2007). Moreover, different ecological response variables

(e.g., community structures of fish, invertebrates, and

periphyton) may exhibit different relationships with nutri-

ent levels (Wang and others 2007). Ideally, managers could

identify thresholds for all variables of interest and allocate

management effort according to the position of different

ecosystems relative to these thresholds (Statzner and others

1997).

The statistical threshold we use in this article is probably

not equivalent to all relevant ecological thresholds. Sig-

moid curves are often used to represent threshold

relationships between a response (y) and a predictor (x),

and can be defined by their mean (l) and steepness (s)

through the equation y ¼ 1=ð1þ expð�ðx� lÞ � sÞÞ. The

statistical P reduction threshold has a moderate mean (0.32)

and a moderate steepness (4.3). The ‘‘low threshold’’ in

Fig. 3 (l = 0.1, s = 5) is a hypothetical relationship where

the response variable increases quickly at relatively small

intervention levels. For example, acute stream water

hypoxia is often caused by manure spills originating from

one or a few farms in a watershed (Tegtmeier and Duffy

2004). If these farms can be identified, a relatively minor

intervention (in terms of the mean watershed-wide P loss)

could result in a large increase in the probability of elim-

inating hypoxic events. The ‘‘high threshold’’ in Fig. 3

(l = 0.8, s = 20) represents a relationship where the

response variable does not increase until relatively high

intervention levels. For example, most agricultural streams
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carry P loads that are much higher than they would be

without human influence (i.e., their reference condition)

(Robertson and Saad 2003). Achieving reference P loads or

concentrations in most streams would require a higher

reduction in P inputs than would simply detecting a sig-

nificant reduction in P.

It is clear that there are many possible thresholds in the

relationship between conservation effort and ecological

response; the statistical threshold we use in this article is

only one example. We chose this threshold primarily

because it was quantifiable from available data, but also

because achieving statistically significant water quality

improvements is useful, in that it will facilitate calibration

of and provide empirical support for modeled pollutant

reduction approaches. Using thresholds to allocate envi-

ronmental management effort will generally result in

aggregation of effort (unless the threshold is very low). In

addition to creating cumulative benefits more efficiently,

aggregation can improve management outcomes in two

ways. First, public perception of the performance of con-

servation programs is likely to benefit from success stories

from specific, identifiable places rather than the calculated

sum of tiny, incremental changes sparsely distributed over

a broad region. And second, aggregation of effort into a

discrete set of geographic units facilitates experimentation

and adaptive management.

Adaptive Management of Nonpoint Source Pollution

Based on the above evaluation, we recommend an aggre-

gated/targeted approach to the allocation of landscape-scale

NPS pollution control effort. In brief, implementation of this

approach follows a four-step process: (1) Delineate a set of

watersheds whose size maximizes overall program utility

(e.g., Maxted and others, this issue); (2) Rank these water-

sheds according to their water quality restoration potential

(e.g., Diebel and others, this issue); (3) Use field-scale pol-

lutant loss models (e.g., Phosphorus Index) to rank fields

within a watershed according to their contribution to the total

pollutant load; (4) Beginning with the top-ranked watershed,

implement BMPs on the top 29% (the stop point for the

aggregated/targeted approach) of fields in each watershed.

Each component in this approach is based on models of

how NPS pollution is distributed, how it can be mitigated,

and what mitigation outcomes are likely to occur. As with

any model-based management approach, its real-world

performance may be limited by simplifying design deci-

sions. For example, spatial relationships among landscape

units (terrestrial and aquatic features acting as sources and

sinks for pollutants) were not accounted for in this analysis

and may have a significant influence on net pollutant export

(Alexander and others 2008). Our analysis assumes con-

sistent application of management goals among landscape

units, where in reality, goals may vary according to the

degree of impairment relative to designated uses (e.g.,

Total Maximum Daily Loads; USEPA 1999). In addition,

the cost of land management is strongly dependent on

institutional arrangements, which can vary both among and

within management jurisdictions. Therefore, an overarch-

ing factor in the design of this approach was that it be

amenable to experimentation and adaptation.

Adaptive management means treating policies as testable

hypotheses (Lee 1993). In our approach, comparably-sized,

spatially-independent watersheds serve as experimental

units (Maxted and others, this issue). Spatial independence

facilitates statistical analysis, and because these watersheds

are smaller than those commonly used in other landscape-

scale management programs (e.g., USGS 1994; WDNR

2005), more of them can be funded, providing better

opportunities for evaluation. Many existing ‘‘hydrologic

unit’’ delineations (e.g., USGS 1994) contain true water-

sheds (the entire area upslope of a point), downstream

segments of larger watersheds, and collections of several

adjacent smaller watersheds. In watershed-based NPS pol-

lution reduction programs, it is prudent to allocate effort to

true watersheds, so that all potential pollution sources are

accounted for, and so that changes in water quality can be

monitored at a single point (Griffith and others 1999).

Models for targeting conservation effort among (Diebel

and others, this issue) and within (Phosphorus Index)

watersheds provide predictions of outcomes that can be

compared with real outcomes. To evaluate model predic-

tions, implementation should purposely deviate from the

approach recommended above. This deviation should be

focused on only one or two parameters at a time and should

be structured to address critical uncertainties. For example,

the stop point (29% of fields) identified by the simulation

model signifies the amount of effort that should be

expended in one watershed before moving on to the next

watershed. With adaptive management, the amount of

effort should be varied among watersheds to assess the

accuracy of this estimated threshold and to assess whether

relevant ecological responses correspond with statistical

thresholds.

Despite strong theoretical support for the utility of

adaptive management (Holling 1978), putting it into

practice within state and national environmental policy has

been challenging (Ruhl 2006). Policies that result in

inconsistent application of regulations or incentives are

often unpopular. Furthermore, landowners who are accus-

tomed to environmental regulations that seem to be based

in scientific certainty may balk at the idea of their land

being subject to an experiment. And from an administrative

standpoint, the continuous monitoring and adjustment that

is at the heart of adaptive management is at odds with

the ‘‘command-and-control’’ paradigm (Holling and Meffe
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1996) that has come to dominate natural resource policy.

Thus, true adaptive management of agricultural NPS pol-

lution will require a willingness by landowners to see the

broad landscape context of their actions, as well as a

willingness by creators of administrative law to authorize

agencies to adapt to new information.

The four-step approach outlined above is a spatially

hierarchical method for targeting NPS pollution control,

from broad regions such as states, where policy is enacted;

to watersheds, where water quality is relevant; to farms and

fields, where management is practiced. Our landscape

simulation results show that targeting at multiple spatial

scales is necessary to optimize program efficiency. In two

companion articles, we fully develop a set of watersheds

(Maxted and others, this issue) and a method for evaluating

their restoration potential (Diebel and others, this issue).

Our approach is most specific at this broad spatial scale

because these issues had not previously been addressed in

the literature. Targeting NPS pollution reduction within

watersheds can be accomplished with a number of existing

models (e.g., Phosphorus Index [Sharpley and others

2003], WINHUSLE [WDNR 1994b], BARNY [WDNR

1994a]). Because program implementation at this level is

typically carried out by local (e.g., county) conservation

staff, model choice can be flexible to accommodate

different technical capabilities and preferences. Alternative

approaches could then be evaluated in a more holistic

version of adaptive management, where administrative

efficiency is monitored along with ecosystem response.

The use of agricultural conservation practices has no

doubt benefited the environment. However, much envi-

ronmental degradation is still caused by agriculture, and

the benefits of conservation have been difficult to measure.

Because the size of the problem greatly exceeds the amount

of resources available to address it, policies have empha-

sized implementation—using available funds to get as

many conservation practices on the ground as possible.

Opportunities to learn from experience have been lost

because of this emphasis. In the long term, implementa-

tion-oriented programs may create fewer environmental

benefits than if they had incorporated prioritization, mon-

itoring, and adaptation from the beginning. Our approach

acknowledges that conservation practices can only be

implemented on a limited portion of the landscape at any

one time. It then capitalizes on nonlinear relationships

between effort and benefit to prioritize aggregated effort in

small watersheds. Successful observation of watershed-

scale responses in these watershed management units

should be viewed as a first goal in a more protracted

mission to reduce nonpoint source pollution.
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